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COMMENT 

Position space renormalisation group approach to fractal 
dimensions of an infinite cluster, its backbone and cutting 
bonds for percolation 

Takashi Nagatani 
College of Engineering, Shizuoka University, Hamamatsu 432, Japan 

Received 25 April 1986 

Abstract. A position space renormalisation group method is presented to  study the cluster 
structure of an  infinite cluster at the percolation threshold.  Fractal dimensions of an  infinite 
cluster, its backbone and  cutting bonds are  determined by the small-cell method for 
two-dimensional bond  percolation. It is shown that the fractal dimension of its cutting 
bonds agrees with the inverse of the connectedness length exponent at t he  fixed point. 

Recently, there has been increasing interest in fractals (Mandelbrot 1982, Stanley and 
Ostrowsky 1986). The percolating infinite cluster is one of the most intensively studied 
random fractals (Kirkpatrick 1979, Stauffer 1979, 1985, Deutscher et a1 1983, Stanley 
and Coniglio 1983, Kapitulnik and Deutscher 1984). Much of our understanding of 
the structure of clusters for percolation has been obtained by computer simulation. 
Although such a procedure can yield accurate results and many insights into the 
structure of such clusters, it nevertheless is not easy in comparison with the renormalisa- 
tion group approach. Here we develop a renormalisation group method applicable to 
the cluster structure of percolation. One measure of the structure of an  infinite cluster 
for percolation is the manner in which N, the total number of bonds in the infinite 
cluster, scales with the linear dimension L of the cluster, N - L D  where D is the fractal 
dimension of the infinite cluster. The infinite cluster is composed of a backbone through 
which electrical current flows and dangling bonds hanging on to it. The number Nb 
of bonds within the backbone also scales with a different fractal dimension Db: Nb- 
L D h .  Furthermore, there are two kinds of bonds in the backbone: ( a )  cutting (singly 
connected) bonds, which have the property that if they are cut, the backbone ceases 
to conduct and ( b )  multiply connected bonds, which have the property that they can 
be cut without interrupting the flow (Stanley 1977). The number N, of cutting bonds 
in the infinite cluster scales with N,- LDc. Coniglio (1981, 1982) provided a rigorous 
argument that for all d, De= l / v  where the v represents the connectedness length 
exponent. We shall calculate the fractal dimensions D, Db and D, by using a position 
space renormalisation group ( PSRG) method (Burkhardt and van Leeuwen 1982). We 
restrict ourselves to the bond percolation problem on the square lattice. The lattice is 
divided into cells of linear dimension 6, a probability p is associated with each occupied 
site in the cell and the cells are rescaled to a single bond or a smaller cell. We first 
note that our PSRG method is different from the original PSRG in respect of the scale 
fractor b. Let us consider the division of the lattice into cells. The simplest example 
is indicated in figure l ( a ) .  Each cell, divided by the broken lines, is renormalised to 
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Figure 1. Illustration of the dividing and rescaling of a b = 2 cell for bond percolation on 
the square lattice. The rescaled bonds are indicated by bold lines. Arrows indicate the 
entries and exits of current. ( a )  A b = 2 cell. Broken lines indicate boundaries divising 
the square lattice into the cells. ( b )  A b = f i c e l l ,  presented by Young and Stincombe (1975). 

a single bond of linear dimension b = 2. In comparison with the original decimation 
transformation (Young and Stinchcombe 1975), the scale factor is different by a factor 

(see figure l (b)) .  The bonds into the cell are doubly counted in the decimation 
transformation by Young and Stinchcombe. The entries and exits of current are 
indicated by arrows. By making the choice of figure l (a ) ,  at the N t h  renormalisation 
with p = 1, the total number of bonds is 4N, while the total length is 2 N .  The perfect 
lattice has therefore a dimension D equal to 2 .  When one divides the lattice into cells, 
it is necessary to satisfy the following relation between the number of bonds n, and 
the scale factor b: 

n, = b2 (1) 
where the n, indicates the total (occupied and unoccupied) number of bonds within 
the cell. To the cell (size b,)-to-cell (size b,) transformation, the following relation 
must be satisfied: 

nt.i/nt,2 = (b1/b2l2 (2)  
where the r ~ , , ~  (or n,,*) represents the total number of bonds in the cell with the length 
scale factor b,  (or b2) .  

From the viewpoint of fractal geometry, it is found that the lattice formed by the 
repeated transformations in figure 1( a )  corresponds to the bond-disordered system on 
the diamond hierarchical lattice (Luck 1985). In general, we find that the geometric 
textures, formed by the repeated PSRG transformations, correspond to the ‘regular 
random fractals’ proposed by Martin and Keefer (1985). Let us calculate the fractal 
dimensions of an infinite cluster, its backbone and its cutting bonds, with the use of 
the definition of fractal dimension for the regular random fractal. First, we derive the 
fractal dimension of an infinite cluster at criticality. The number of bonds within a 
spanning cluster between entries and exits in a spanning configuration a is represented 
by n,,=. Then the mean value of n,,, is 

where the fOL is the probability of a particular configuration a. The probability R (  p )  
that a cell of size b is connected between the entries and the exits is given by 

At the fixed point p*  = R ( p * ) ,  an incipient infinite cluster appears. The fractal 
dimension D of the infinite cluster is given by 

D = ln((n,))*/ln b ( 5 )  
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where the asterisk indicates the value at the fixed point and the ( (n , ) )  is the average 
number of bonds within spanning cluster if the cell is connected: ( ( n , ) )  = ( n i ) / R (  p ) .  

Similarly, we derive the fractal dimensions of the backbone and  its cutting bonds: 

( 6 )  

(7)  
where the nb and the n, represent respectively the number of bonds through which 
electrical current flows in the spanning cluster and the number of bonds such that if 
one is cut the entries are no longer connected to the exits in the cell. 

We calculate the fractal dimensions 0, Db and D, for the simplest case (figure 
l ( a ) )  by way of example. Figure 2 shows spanning configurations for a b = 2 cell. 
( ( n l ) ) ,  ((flb)) and  ((n,)) are respectively given by 

( ( n , ) )  = (4P4+3 x 4p3q + 2  x 2p2q2)/R(p) (8) 
( ( n d )  = (4P4+2 x 4p3q + 2  x 2p2q2)/R(p)  (9) 

( ( n c ) ) = ( 2 x 4 P 3 q + 2 x 2 P 2 q 2 ) / R ( P )  (10) 
where R (  p )  = 2p2 -p4. At the fixed point p*  = R (  p * ) ,  we obtain the following relation: 

d R  / d p  Ip* = (( nc))*.  ( 1 1 )  
The rigorous relation D, = 1/  v derived by Coniglio (1982) holds for this case. In table 
1 ,  the first line shows estimated fractal dimensions for the case shown by figure l ( a ) .  

Db = h(( nb))*/h b 

D, = In(( n,))*/ln b 
and 

x 4  x 2  

n, = 4 n, 3 n, : 2  
nb= 4 nb= 2 nb= 2 
n: 3 0 nc 2 n,= 2 

Figure 2. Spanning configurations that arise in the position space renormalisation group 
for bond percolation on the square lattice using a b = 2 cell. For each spanning configur- 
ation, the number of bonds within a spanning cluster ( n , ) ,  the number of bonds through 
which current Rows (nh) and the number of bonds such that if one is cut the entries is no 
longer connected to the exits ( n , )  are given just below each figure. 

Table 1. List of the fractal dimensions by the PSRG approach for the cases shown in figures 
l ( a ) ,  3 (a)  and ( b ) ,  3 (cell (b)-to-cell ( a )  transformation) and figure 4, compared with 
other sources. 

Type P* D D h  D, 

Figure l ( a )  0.618 1.610 1.305 0.610 
Figure 3 ( a )  0.5 1.488 1.339 0.603 
Figure 3(b)  0.5 1.547 1.310 0.606 
Figure 3 0.5 1.713 1.230 0.613 
Figure 4 0.5 1.734 1.444 0.700 
Other sources 0.5'' 1 .90h 1.62' 0.75" 

I' Stauffer (1979, 1985). 
Kapituinik and Deutscher (1984). 
Hermann and Stanley (1984). 
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We also calculate the fractal dimensions for another cases. We partition the square 
lattice into cells (see figure 3 ( a )  and ( b ) )  which will be renormalised into a single 
bond. The total number of bonds in a cell equals to the square of the scale factor for 
each case shown by figure 3 ( a )  and (6). We estimate the fractal dimensions by the 
use of equations ( 5 ) ,  (6) and (7). The estimated fractal dimensions for the cases of 
figure 3 ( a )  and ( b )  are respectively shown by the second and third lines in table 1. 
For these cases the Coniglio relation (1 1) holds. 

Until now, we have considered the conventional PSRG approach of transforming 
from a system of cells to a new system of bonds. However, one can consider a 
transformation in which one passes from a system of cells of size b, to a system of 
cells of size b,. Such a ‘cell-to-cell’ transformation enables one to have a rescaling 
length b,/b, .  Then the fractal dimensions are given by 

D = l n ( ( ( n ~ ) ) ~ / ( ( n ~ ) ) ~ ) / l n ( b , / b , )  (12) 

Db = In( ( (nb) ) t / ( (nb) )T) / ln(b , /b~)  (13) 

Dc = In(((nc))T/((nc))T)/ln(b,/b2). (14) 

We calculate the fractal dimensions for the cell (shown by figure 3(b))-to-cell (shown 
by figure 3 ( a ) )  transformation. The estimated values are given by the fourth line in 
table 1. We also consider the other case indicated by figure 4. This case is presented 
by Reynolds et a1 (1977) and  Bernasconi (1978). Though they treat i t  as a cell-to-bond 
transformation, we consider it as a cell-to-cell transformation. The total number of 
bonds in the cell (shown by figure 4) is not satisfied with equation (1) but with equation 
(2). By using equations (12), (13) and (14), the fractal dimensions are estimated and 
shown by the fifth line in table 1. In these cell-to-cell transformations, the Coniglio’s 
relation is also satisfied. 

b = &  / - b = 3  [ - 
/ /  

t 
( 0 )  l b )  

Figure 3. Illustration of the rescalings of a b = >3 cell ( a )  and  a b = 3 cell ( b )  for bond 
percolation on  the square lattice. 

E f f t 

b;  i b ,  = 2  - L 
t f 

Figure 4. O n e  example of a cell-to-cell transformation. The cell with eight bonds scales 
to the cell with two bonds.  To this cell-to-cell transformation, the relationsip ( 2 )  is satisfied. 
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In summary, we present the PSRG method to derive the three fractal dimensions 
(of an infinite cluster, its backbone and cutting bonds) in relation to the cluster structure 
of an infinite cluster at the percolation threshold. It is shown that our PSRG method 
is satisfied with Coniglio’s relation: D, = 1/ v. Our renormalisation group approach 
for the fractal dimensions of the cluster structure in percolation is completely general 
and is not limited to the particular models considered here. To have better values for 
the fractal dimensions, it will be necessary that one perform large-cell calculations by 
a Monte Carlo renormalisation method. 
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